Frames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules

نویسندگان

  • AMIR KHOSRAVI
  • BEHROOZ KHOSRAVI
  • Amir Khosravi
  • Behrooz Khosravi
چکیده

Abstract. In this article, we study tensor product of Hilbert C∗-modules and Hilbert spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal bases) for Hilbert A⊗B-module E ⊗F , and we get more results. For Hilbert spaces H and K, we study tensor product of frames of subspaces for H and K, tensor product of resolutions of the identities of H and K, and tensor product of frame representations for H and K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bessel multipliers on the tensor product of Hilbert $C^ast-$‎ modules‎

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...

متن کامل

$G$-dual Frames in Hilbert $C^{*}$-module Spaces

In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames  are given.  A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...

متن کامل

The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

Frames in super Hilbert modules

In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

متن کامل

G-frames and their duals for Hilbert C*-modules

Abstract. Certain facts about frames and generalized frames (g- frames) are extended for the g-frames for Hilbert C*-modules. It is shown that g-frames for Hilbert C*-modules share several useful properties with those for Hilbert spaces. The paper also character- izes the operators which preserve the class of g-frames for Hilbert C*-modules. Moreover, a necessary and suffcient condition is ob- ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005